بزرگترین مرکز تخصصی سنسور و ترانسمیتر

شرکت آداک فرایند سپهر تامین کننده اصلی تجهیزات ابزار دقیق در ایران

بزرگترین مرکز تخصصی سنسور و ترانسمیتر

شرکت آداک فرایند سپهر تامین کننده اصلی تجهیزات ابزار دقیق در ایران

بزرگترین مرکز تخصصی سنسور و ترانسمیتر

ابزار دقیق آداک فرآیند سپهر
نمایندگی وگا VEGA آلمان
نمایندگی تجهیزات تشخیص سطح UWT در ایران
نمایندگی فروش انواع دتکتورگاز پروسنس Prosense
نمایندگی فروش سنسور فشار مذاب اَتک Atek
نماینده سطح سنج uwt آلمان در ایران

پیوندهای روزانه

۵ مطلب با موضوع «سنسور فشار مذاب» ثبت شده است

در پروژه‌های صنعتی، انتخاب تجهیزات ابزار دقیق یکی از مهم‌ترین مراحل است؛ این تجهیزات به شما امکان می‌دهند پارامترهای کلیدی فرآیند را پایش و کنترل کنید و از بهره‌وری سیستم مطمئن شوید. در این راهنما، مراحل و نکات ضروری برای انتخاب تجهیزات ابزار دقیق به شیوه‌ای خلاصه و کاربردی بیان شده‌اند.

راهنمای انتخاب بهترین تجهیزات ابزار دقیق برای پروژه‌های صنعتی

چرا انتخاب تجهیزات ابزار دقیق اهمیت دارد؟

تجهیزات ابزار دقیق شامل ابزارهایی مانند سنسورها، کنترلرها و ترانسمیترها هستند که نقش مهمی در نظارت و مدیریت شرایط عملیاتی ایفا می‌کنند. این ابزارها، اطلاعات حیاتی را از وضعیت سیستم‌های مختلف جمع‌آوری کرده و به واحدهای کنترل ارسال می‌کنند تا فرآیندها بهینه شوند. هر خطایی در انتخاب این تجهیزات ممکن است به کاهش کیفیت، افزایش هزینه‌ها یا حتی خطرات ایمنی منجر شود. بنابراین، انتخاب صحیح این ابزارها مطابق نیازهای پروژه و شرایط محیطی از اهمیت بالایی برخوردار است.

مراحل انتخاب تجهیزات ابزار دقیق

مراحل زیر شما را در جهت انتخاب تجهیزات ابزار دقیق کمک می‌کند.

۱. تحلیل نیازهای پروژه

پیش از هر چیزی، شناخت کامل نیازهای پروژه از مهم‌ترین مراحل است. این مرحله شامل بررسی پارامترهای فیزیکی مانند دما، فشار، یا رطوبت و شرایط محیطی خاص مانند خوردگی یا تغییرات دمایی است که تجهیزات باید در آن‌ها کار کنند. این تحلیل به انتخاب تجهیزاتی متناسب با محیط کمک می‌کند تا عمر مفید تجهیزات و دقت عملکرد آن‌ها حفظ شود.

۲. انتخاب سنسورهای مناسب

سنسورها ابزارهای کلیدی برای ثبت و پایش شرایط مختلف هستند و باید دقیق و سریع باشند. برای هر پارامتری که قصد اندازه‌گیری آن را دارید، نوع سنسور مناسب انتخاب کنید؛ برای مثال، سنسورهای فشار، دما، جریان و سطح، هرکدام ویژگی‌ها و دقت متفاوتی دارند. این سنسورها همچنین باید توانایی عملکرد پایدار در طول زمان و مقاومت در برابر شرایط محیطی را داشته باشند.

۳. بررسی محیط عملیاتی

شرایط محیطی می‌تواند نقش مهمی در عملکرد تجهیزات داشته باشد؛ تجهیزات باید با توجه به شرایط محیطی، مقاومت در برابر دما، رطوبت، گرد و غبار و حتی تابش نور خورشید انتخاب شوند. در برخی موارد، اگر محیط خورنده است یا دارای آلودگی بالا، باید تجهیزات مقاوم در برابر خوردگی یا دارای پوشش محافظ انتخاب شوند.

۴. سازگاری با سیستم‌های کنترلی

مطمئن شوید که تجهیزات انتخابی با سیستم‌های کنترلی موجود در پروژه سازگار هستند. تجهیزات مختلف از پروتکل‌های ارتباطی متنوعی مانند Modbus یا HART پشتیبانی می‌کنند؛ هماهنگی در این بخش، نصب و راه‌اندازی تجهیزات را آسان‌تر و عملکرد سیستم را کارآمدتر می‌کند.

۵. بررسی هزینه‌ها و بودجه

تحلیل هزینه‌ها تنها به قیمت خرید محدود نمی‌شود؛ بلکه شامل هزینه‌های نصب، نگهداری و تعمیرات دوره‌ای نیز هست. گاهی انتخاب تجهیزات ارزان‌تر در ابتدا ممکن است به هزینه‌های بالاتری در طولانی‌مدت منجر شود؛ بنابراین، همواره کیفیت و کارایی تجهیزات را در کنار هزینه‌ها در نظر بگیرید.

۶. اطمینان از استانداردها و گواهینامه‌ها

برای اطمینان از ایمنی و کیفیت تجهیزات، باید آن‌ها را مطابق با استانداردهای معتبر صنعتی مانند CE، ATEX و سایر گواهینامه‌های ایمنی انتخاب کنید. این استانداردها نه تنها به بهبود کیفیت کمک می‌کنند بلکه در برخی محیط‌ها، مانند محیط‌های قابل‌انفجار، از اهمیت ویژه‌ای برخوردارند.

۷. بررسی پشتیبانی و خدمات پس از فروش

وجود خدمات پس از فروش از جانب تولیدکنندگان، می‌تواند از بروز مشکلات ناشی از خرابی تجهیزات جلوگیری کند. خدماتی مانند تامین سریع قطعات یدکی، راهنمایی فنی و آموزش کاربران به دوام و عمر طولانی‌مدت تجهیزات کمک شایانی می‌کند.

۸. مطالعه تجربیات پروژه‌های مشابه

یکی از روش‌های مؤثر برای انتخاب تجهیزات مناسب، بررسی پروژه‌های مشابه و استفاده از تجربه‌های موفق آن‌ها است. این کار به شما کمک می‌کند تا از نقاط قوت و ضعف تجهیزات انتخابی آگاه شده و از انتخاب اشتباه اجتناب کنید.

نکات کلیدی

تجهیزات با دقت و پایداری بالا در بلندمدت هزینه‌های تعمیرات را کاهش داده و قابلیت اطمینان را افزایش می‌دهند. همچنین، سنسورهایی با پاسخ‌دهی سریع برای فرآیندهایی که به واکنش آنی نیاز دارند مناسب هستند. استفاده از تجهیزات مقاوم در برابر شرایط سخت محیطی نیز می‌تواند عمر مفید و عملکرد سیستم را بهبود بخشد.

انتخاب تجهیزات ابزار دقیق نیازمند بررسی دقیق نیازهای پروژه، شرایط محیطی و بودجه است. توجه به این نکات می‌تواند عملکرد پروژه را بهبود بخشیده و هزینه‌های کلی را کاهش دهد. در صورت نیاز به مشاوره تخصصی، متخصصان می‌توانند در انتخاب بهترین گزینه‌ها به شما کمک کنند.

  • آداک فرایند سپهر

پیرومتر نوعی سنسور دمای غیر تماسی است که با اندازه گیری میزان تشعشعات خود، گرما را تشخیص می دهد. پیرومترها قرن هاست که برای اندازه گیری دمای اجسام داغ مانند فلز مذاب، شیشه و شعله ها استفاده می شود.

آنها همچنین در انواع کاربردهای صنعتی و علمی مانند نظارت بر دمای موتورها، کوره ها و واکنش های شیمیایی استفاده می شوند.

آداک فرایند سپهر متخصص در دماسنج های مادون قرمز ، پیرومترها و دوربین های تصویربرداری حرارتی برای کاربردهایی مانند فلزات، پلاستیک و تولید شیشه.

 

پیرومتر یا پایرومتر چیست؟


پیرومترها با تشخیص و تجزیه و تحلیل تشعشعات حرارتی ساطع شده از یک جسم، دما را اندازه گیری می کنند. این دستگاه‌های بسیار کاربردی از تجهیزات ابزار دقیق بشمار می‌آیند. هنگامی که یک جسم گرم می شود، تابش حرارتی را به شکل امواج الکترومغناطیسی، عمدتاً در ناحیه مادون قرمز طیف الکترومغناطیسی ساطع می کند.

شدت و توزیع طول موج این تابش به دمای جسم بستگی دارد.

 

پیرومتر چگونه کار می کند؟


پیرومترها با گرفتن این تشعشعات حرارتی و تبدیل آن به سیگنال الکتریکی قابل پردازش و تفسیر کار می کنند. روش خاصی که توسط یک پیرومتر استفاده می شود به نوع آن ( نوری، مادون قرمز، دو رنگ یا تابش کلی ) و طراحی آن بستگی دارد.

 

انواع پیرومتر

پیرومترهای نوری از لنزها یا سیستم های نوری برای متمرکز کردن تابش حرارتی بر روی یک آشکارساز مانند ترموپیل یا فوتودیود استفاده می کنند. آشکارساز تشعشع را به یک سیگنال الکتریکی تبدیل می کند که سپس تقویت و تجزیه و تحلیل می شود. پیرومترهای نوری اغلب از اصل مقایسه تابش از جسم با منبع مرجع استفاده می کنند که امکان تعیین دما را فراهم می کند.
پیرومترهای مادون قرمز از حسگرهای تخصصی مانند ترموپیل یا بولومتر برای تشخیص و اندازه گیری مستقیم تابش مادون قرمز ساطع شده از جسم استفاده می کنند. این حسگرها یک سیگنال الکتریکی متناسب با شدت تابش تولید می کنند که سپس برای محاسبه دما پردازش می شود.
برای اطلاعات بیشتر به راهنمای ما در مورد انتخاب یک پیرومتر مادون قرمز نگاهی بیندازید .

پیرومترهای دو رنگ از دو طول موج مختلف تابش مادون قرمز استفاده می کنند و نسبت آنها را اندازه گیری می کنند. این نسبت به دمای جسم بستگی دارد و می توان از آن برای محاسبه دقیق دما استفاده کرد.
پیرومترهای تشعشعی کل مقدار کل تابش گرمایی ساطع شده از یک جسم را با در نظر گرفتن شدت در طیف گسترده ای از طول موج ها اندازه گیری می کنند. این اندازه گیری جامع دقت بالایی را ارائه می دهد اما به فناوری پیچیده تری نیاز دارد.
هر نوع پیرومتر مزایا و معایب خاص خود را دارد:
پیرومترهای نوری قدیمی ترین نوع پیرومتر هستند. آنها دقیق و دقیق هستند اما استفاده از آنها دشوار است و نیاز به کالیبراسیون دارند.

پیرومترهای مادون قرمز دقت بیشتری نسبت به پیرومترهای نوری دارند و می توان از آنها برای اندازه گیری دمای اجسامی که با چشم غیر مسلح قابل مشاهده نیستند استفاده کرد. با این حال، آنها معمولا گرانتر از پیرومترهای نوری هستند.

پیرومترهای دو رنگ از دو طول موج مختلف تابش مادون قرمز برای اندازه گیری دمای یک جسم استفاده می کنند. این نوع پیرومتر دقت بیشتری نسبت به پیرومترهای تک طول موج دارد، اما می تواند گرانتر باشد.

پیرومترهای تشعشعی کل مقدار کل تابش گرمایی ساطع شده از یک جسم را اندازه گیری می کنند. این نوع پیرومتر دقیق ترین نوع پیرومتر است، اما می تواند گران ترین باشد.

 

تفاوت بین پیرومترها و دوربین های IR

پیرومتر نوعی دماسنج مادون قرمز است . تفاوت بین یک دماسنج و یک دماسنج مادون قرمز این است که پیرومترها فقط می توانند دما را در یک نقطه ثبت کنند.

این را می توان با یک دماسنج مادون قرمز یا دوربین تصویربرداری حرارتی مقایسه کرد که اطلاعات بیشتری را ارائه می دهد و همچنین می تواند برای تعیین گرم ترین یا سردترین نقطه در یک منطقه اندازه گیری استفاده شود.

 

پیرومتر برای چه مواردی استفاده می شود؟


پیرومترها به دلیل قابلیت اندازه گیری دمای غیر تماسی خود در طیف وسیعی از صنایع و زمینه های علمی کاربرد دارند. برخی از کاربردهای رایج پیرومترها عبارتند از:

فرآیندهای صنعتی : پیرومترهای صنعتی در فرآیندهای تولید برای نظارت و کنترل دمای مواد مانند فلزات مذاب، شیشه، پلاستیک و سرامیک استفاده می‌شوند. آنها به اطمینان از گرمایش، سرمایش و کنترل کیفیت مناسب کمک می کنند.

نحوه انتخاب پیرومتر مادون قرمز برای پلاستیک

نظارت بر کوره و کوره : پیرومترها نقش مهمی در نظارت بر دمای داخل کوره ها، کوره ها و کوره های مورد استفاده در صنایعی مانند فولاد، شیشه و سرامیک دارند. آنها کنترل دقیق دما را امکان پذیر می کنند، مصرف انرژی را بهینه می کنند و کیفیت محصول را تضمین می کنند.

تولید برق : پیرومترها در نیروگاه ها برای نظارت بر دمای بویلرها، توربین ها و سایر قطعات استفاده می شوند. این به جلوگیری از گرمای بیش از حد، بهینه سازی کارایی و اطمینان از عملکرد ایمن کمک می کند.

صنعت خودرو : پیرومترها در ساخت خودرو و تحقیقات برای اندازه‌گیری دمای اجزای موتور، سیستم‌های اگزوز، ترمزها و سایر قطعات مورد استفاده قرار می‌گیرند. این به بهینه سازی عملکرد، کنترل انتشار گازهای گلخانه ای و ایمنی کمک می کند.

تحقیق و توسعه : پیرومترها به طور گسترده در تحقیقات علمی، به ویژه در زمینه هایی مانند فیزیک، شیمی و علم مواد استفاده می شوند. آنها به بررسی پدیده های دمای بالا، مطالعه خواص حرارتی مواد و امکان کنترل دقیق دما در آزمایش ها کمک می کنند.

آتش نشانی و ایمنی : در کاربردهای آتش نشانی و ایمنی، از پیرومترها برای اندازه گیری دمای شعله ها ، شناسایی نقاط داغ در ساختمان ها یا ماشین آلات و ارزیابی خطرات احتمالی آتش سوزی استفاده می شود.

مزایای پیرومتر چیست؟

پیرومترها نسبت به سایر روش‌های اندازه‌گیری دما، مانند دماسنج تماسی، مزایای زیادی دارند. برخی از مزایای استفاده از پیرومترهای IR عبارتند از:

اندازه گیری دمای بدون تماس: پیرومترها نیازی به تماس مستقیم با جسم مورد اندازه گیری ندارند، که در برخی موارد می تواند خطرناک یا چالش برانگیز باشد.
دقت و دقت: پیرومترها می توانند بسیار دقیق و دقیق باشند، مخصوصاً زمانی که با یک سنسور کالیبره استفاده می شوند .
طیف وسیعی از کاربردها: پیرومترها می توانند دمای طیف وسیعی از اجسام، از فلز مذاب گرفته تا شعله را اندازه گیری کنند.


محدودیت های استفاده از پیرومتر

هزینه: پیرومترها می توانند گرانتر از انواع دیگر دماسنج ها باشند.
الزامات کالیبراسیون: برای اطمینان از دقت، پیرومترها باید به طور مرتب کالیبره شوند.
عوامل محیطی: پیرومترها می توانند تحت تأثیر عوامل محیطی مانند گرد و غبار و رطوبت باشند.

نتیجه گیری

پیرومترها ابزارهای ارزشمندی برای اندازه گیری دمای بدون تماس هستند که از تابش گرمایی ساطع شده از اجسام برای تعیین دمای آنها استفاده می کنند. آنها مزایای متعددی از جمله اندازه گیری بدون تماس، دقت، دقت و کاربرد گسترده در صنایع و تحقیقات علمی را ارائه می دهند. با انواع مختلفی از پیرومترهای موجود که هر کدام نقاط قوت و محدودیت های خاص خود را دارند، انتخاب صحیح یک پیرومتر به نیازهای خاص بستگی دارد.

 

سوالات متداول


پایرومتر برای چه مواردی استفاده می شود؟


پیرومترها برای اندازه گیری دمای اجسام بدون تماس فیزیکی استفاده می شوند. آنها در صنایعی مانند تولید، تولید برق، خودروسازی و تحقیقات علمی کاربرد دارند.

 

انواع مختلف پیرومتر چیست؟


پیرومترها انواع مختلفی دارند، از جمله پیرومترهای نوری، پیرومترهای مادون قرمز، پیرومترهای دو رنگ و هواسنج‌های تابش کل. هر نوع از اصول و فن آوری های مختلفی برای اندازه گیری دما استفاده می کند.

 

تفاوت بین دماسنج و پیرومتر چیست؟


تفاوت اصلی بین دماسنج و پیرومتر در روش اندازه گیری دما است. دماسنج ها معمولاً به تماس فیزیکی با جسم مورد اندازه گیری نیاز دارند، در حالی که پیرومترها دما را از راه دور با استفاده از سطوح تابش حرارتی اندازه گیری می کنند. پیرومترها برای اندازه گیری دماهای بالا یا در شرایطی که تماس فیزیکی غیرعملی یا ناامن است مناسب هستند.

 

منبع

 

  • آداک فرایند سپهر

تفاوت سنسور دمای RTD با ترموکوپل

سنسورهای دما نظارت و کنترل دقیق را در فرآیندهای وابسته به دما تضمین می کنند. انتخاب سنسور مناسب برای دستیابی به دقت و قابلیت اطمینان در فرآیندهای صنعتی، آزمایشات علمی و کاربردهای روزمره بسیار مهم است.

داده های دما دقیق و قابل اعتماد برای کنترل فرآیند، تضمین کیفیت و ایمنی ضروری است. دو تا از رایج ترین سنسورهای دما، آشکارسازهای دمای مقاومتی و ترموکوپل ها هستند .

این مقاله به شما کمک می کند تا تفاوت های بین RTD و ترموکوپل را درک کنید و شما را در انتخاب مناسب ترین سنسور برای نیازهای خود راهنمایی کنید.

آداک فرایند سپهر پیشرو در اندازه گیری دما و طیف گسترده ای از سنسورهای حرارتی RTD و ترموکوپل در ایران برای کاربردهای صنعتی می‌باشد.

RTD ها و ترموکوپل ها دو نوع متداول سنسور دما هستند که هر کدام اصول عملیاتی و مصالح ساختمانی متفاوتی دارند.

سنسور RTD تغییرات دما را از طریق تغییر در مقاومت عنصر خود (اغلب پلاتین، مس یا نیکل) تشخیص می دهد. با افزایش دما، مقاومت به طور قابل پیش‌بینی افزایش می‌یابد که امکان محاسبه دقیق دما را فراهم می‌کند.

ترموکوپل ها بر اثر Seebeck (که به عنوان اثر ترموالکتریک نیز شناخته می شود ) تکیه می کنند، و هنگامی که در معرض گرادیان دما قرار می گیرند، ولتاژ تولید می کنند. ولتاژ تولید شده با اختلاف دما بین اتصالات اندازه گیری و مرجع نسبت مستقیم دارد.

 

تفاوت های اصلی RTD در مقابل ترموکوپل

قابلیت های محدوده دما
دقت و دقت
زمان پاسخگویی و عملکرد
سیم کشی و نصب
هزینه
سناریوهای کاربردی
در زیر همه اینها را توضیح می دهیم.

قابلیت های محدوده دما
RTD ها معمولاً محدوده دمایی محدودتری دارند که برای دماهای بین 200- تا 850 درجه سانتی گراد مناسب است. در مقابل، ترموکوپل ها بسته به نوع فلزات مورد استفاده می توانند محدوده دمایی وسیع تری از -270 درجه سانتی گراد تا 2300 درجه سانتی گراد را اندازه گیری کنند.

دقت و دقت
RTD ها معمولاً به دلیل رابطه مقاومت و دما قابل پیش بینی و حداقل رانش در طول زمان دقت و پایداری بالاتری ارائه می دهند.

ترموکوپل ها، در حالی که عموماً دقت کمتری دارند، در محیط های خشن و کاربردهای با دمای بالا به دلیل ساختار ناهموارشان عالی هستند. عوامل مؤثر بر دقت عبارتند از کالیبراسیون سنسور، پایداری و شرایط محیطی.

زمان پاسخگویی و عملکرد
ترموکوپل‌ها معمولاً زمان پاسخ‌گویی سریع‌تری نسبت به RTD دارند که آن‌ها را برای اندازه‌گیری دماهای با تغییر سریع مناسب‌تر می‌سازد. این به این دلیل است که ترموکوپل ها جرم حرارتی کمتری دارند و می توانند به سرعت به تغییرات دما پاسخ دهند.

سیم کشی و نصب
RTD ها و ترموکوپل ها نیاز به نصب دقیق برای خوانش دقیق دما دارند. پیکربندی‌های سیم‌کشی RTD شامل تنظیمات دو، سه یا چهار سیمه می‌شود ، در حالی که ترموکوپل‌ها برای حفظ دقت به انتخاب سیم پسوند نیاز دارند.

هر دو RTD و ترموکوپل باید در حین نصب به دقت قرار گرفته و نصب شوند تا از اندازه گیری دقیق دما اطمینان حاصل شود. عمق غوطه وری مناسب، تماس حرارتی و عایق بودن در برابر تأثیرات خارجی ملاحظات ضروری برای هر دو نوع سنسور است.

 

 

مقایسه هزینه
در حالی که RTD ها معمولاً هزینه های اولیه بالاتری نسبت به ترموکوپل ها دارند، ممکن است به دلیل دقت و پایداری برتر، مقرون به صرفه تری در درازمدت ارائه دهند و در نتیجه نیازهای کالیبراسیون و نگهداری کمتری را در طول زمان به همراه داشته باشند.

ترموکوپل ها به دلیل ساخت ساده تر و مواد کمتر مورد نیاز معمولاً مقرون به صرفه تر هستند. با این حال، هزینه‌های نگهداری طولانی‌مدت آن‌ها ممکن است به دلیل طول عمر کوتاه‌تر و پتانسیل برای جابجایی یا تخریب در طول زمان بیشتر باشد، که نیاز به تعویض یا کالیبراسیون مجدد مکرر دارد.

تفاوت کاربردها
RTD ها معمولاً در برنامه هایی استفاده می شوند که دقت و پایداری بالا در محدوده دمایی باریک ضروری است، مانند محیط های آزمایشگاهی، تولید دارو، ابزار دقیق و سیستم های HVAC که در آن کنترل دما حیاتی است.

ترموکوپل ها در محیط های با دمای بالا و کاربردهایی که در آن تغییرات سریع دما باید اندازه گیری شود، برتری دارند.

آنها به طور گسترده در فرآیندهای صنعتی مانند کوره ها، کوره ها، کوره های صنعتی، ذوب فلزات، تولید شیشه، نظارت بر گازهای خروجی، و کاربردهای خودرو و هوافضا که زمان پاسخ سریع ضروری است استفاده می شوند.

 

بیشتر بخوانید:

دتکتور گاز چیست، چگونه کار می‌کند و چه کاربردهایی دارد؟

 

کدام بهتر است: RTD یا ترموکوپل؟
انتخاب بین RTD و ترموکوپل به عوامل مختلفی از جمله محدوده دما، الزامات دقت، زمان پاسخگویی، ملاحظات هزینه و شرایط محیطی بستگی دارد.

اگر کاربرد به اندازه گیری دما فراتر از قابلیت های RTD ها (معمولا بالای 850 درجه سانتی گراد) نیاز دارد، ترموکوپل ها انتخاب بهتری هستند. با این حال، اگر دقت و پایداری بالا، به ویژه در یک محدوده دمایی باریک، حیاتی است، RTD ها عملکرد عالی ارائه می دهند.

در صورت نیاز به اندازه گیری تغییرات سریع دما، ترموکوپل ها به دلیل زمان پاسخ سریع تر ترجیح داده می شوند. با توجه به هزینه و نگهداری، RTD ها ممکن است هزینه اولیه بالاتری داشته باشند اما هزینه های تعمیر و نگهداری کمتری در طول عمر خود داشته باشند، در حالی که ترموکوپل ها مقرون به صرفه تر هستند اما ممکن است به تعویض یا کالیبراسیون مجدد بیشتری نیاز داشته باشند.

 

 

از نمونه های موردی RTD در مقابل ترموکوپل استفاده کنید
در یک مرکز تولید دارو، که در آن کنترل دقیق دما برای کیفیت و ایمنی محصول ضروری است، RTD ها به دلیل دقت و پایداری بالا معمولا مورد استفاده قرار می گیرند.

در یک ریخته‌گری فولاد، که دما می‌تواند تا 1800 درجه سانتی‌گراد برسد، ترموکوپل‌ها به دلیل توانایی آن‌ها در مقاومت در برابر دمای شدید و زمان پاسخ‌دهی سریع‌تر، انتخاب ارجح هستند.

در آزمایشگاه تست موتور خودرو، جایی که تغییرات سریع دما باید به دقت اندازه‌گیری شود، ممکن است از ترکیبی از RTD و ترموکوپل استفاده شود که RTD‌ها دقت بالایی را برای اندازه‌گیری‌های حالت پایدار ارائه می‌دهند و ترموکوپل‌ها تغییرات گذرا دما را ثبت می‌کنند.

نتیجه
هر دو RTD و ترموکوپل دارای نقاط قوت و ضعف هستند. درک تفاوت‌های آن‌ها و در نظر گرفتن نیازهای کاربردی خاص شما، مراحل بسیار مهمی در انتخاب مناسب‌ترین پروب دما برای اندازه‌گیری و کنترل دقیق دما است.

 

سوالات متداول


تفاوت اصلی بین RTD و ترموکوپل چیست؟


RTD ها برای اندازه گیری دما به تغییرات مقاومت الکتریکی متکی هستند، در حالی که ترموکوپل ها ولتاژی متناسب با اختلاف دما بین اتصالات فلزی غیر مشابه ایجاد می کنند.

 

چرا RTD از ترموکوپل ها دقیق تر است؟


RTD ها عموماً دقیق تر از ترموکوپل ها هستند زیرا رابطه مقاومت و دما عنصر RTD به خوبی تعریف شده است و می توان دقیقاً کالیبره کرد. علاوه بر این، RTD ها پایداری و تکرارپذیری طولانی مدت عالی را نشان می دهند و اندازه گیری های ثابت و قابل اعتماد را در طول زمان تضمین می کنند.

 

چرا به جای ترموکوپل از RTD استفاده کنیم؟


RTD ها بر ترموکوپل ها در کاربردهایی که دقت و پایداری بالا در محدوده دمایی باریک ضروری است، ترجیح داده می شوند، مانند محیط های آزمایشگاهی، تولید داروها و ابزار دقیق. RTD ها همچنین طول عمر بیشتری دارند و نیاز به کالیبراسیون مجدد کمتری دارند که هزینه های تعمیر و نگهداری را کاهش می دهد.

 

RTD در مقابل ترموکوپل در مقابل ترمیستور: چگونه آنها را با هم مقایسه می کنند؟


هر نوع سنسور مزایا و محدودیت های خود را دارد. ترمیستورها دستگاه های نیمه هادی هستند که در مقایسه با RTD ها و ترموکوپل ها دارای حساسیت بالا و هزینه کم هستند اما محدوده دمایی محدودی دارند.

 

هنگام انتخاب بین RTD و ترموکوپل چه عواملی باید در نظر گرفته شود؟


ملاحظات کلیدی عبارتند از:

الزامات محدوده دما
دقت و دقت
زمان پاسخ
ملاحظات هزینه و نگهداری
شرایط محیطی (به عنوان مثال، ارتعاش، تداخل الکترومغناطیسی)
ادغام با سیستم ها یا ابزار دقیق موجود

منبع

  • آداک فرایند سپهر

سیم  کشی سنسور دما Pt100 با سایر سنسورهای دما، به ویژه ترموکوپل ها متفاوت است. مهم است که سیم‌کشی سنسور خود را درست انجام دهید، در غیر این صورت ممکن است ابزار اندازه‌گیری قرائت نادرست داشته باشد یا اصلاً قرائت نشود.

کابل pt100

کابل هایی که برای اتصال سنسور Pt100 استفاده می شوند معمولاً هادی های مسی دارند. در سنسورهای خود ما از مس آبکاری شده استفاده می کنیم. بسته به محدوده دمایی مورد نیاز، قلع، نقره یا نیکل اندود شده است. اما استفاده از مس ساده جایز است.

سنسور PT100

برای دماهای بسیار بالا از کابل های نیکل استفاده می کنیم. توجه داشته باشید که مقاومت نیکل حدود 5 برابر مس است و بنابراین همیشه باید از سیستم اتصال 3 یا 4 سیم استفاده کنید (به زیر مراجعه کنید).

اندازه هادی لازم نیست خیلی بزرگ باشد. به عنوان مثال، نیازی به استفاده از کابل برق نیست، کابل ابزار کافی است. ما معمولا از هادی های رشته ای 7/0.2 میلی متری 24AWG در سنسورهای خود استفاده می کنیم، حتی با طول کابل های بسیار متری بدون مشکل. البته، می توان از کابل بزرگ برای طول کابل های بسیار طولانی استفاده کرد، اما این معمولاً هزینه های غیرضروری را برای کار های کوتاه تر اضافه می کند. برای کابل کشی طولانی، توصیه می کنیم به جای آن از یک فرستنده دما استفاده کنید.

عایق کابل

نوع کابلی که برای برقراری ارتباط بین سنسور و ابزار اندازه گیری انتخاب می کنید با توجه به شرایط عملیاتی فرآیند تعیین می شود. بسیاری از سنسورهایی که ما عرضه می کنیم دارای کابل پرنده هستند که مستقیماً به دستگاه متصل می شود. این کابل با دقت انتخاب شده است تا هم نیازهای دما و هم سایر جنبه های محیطی کاربرد را برآورده کند. این می تواند شامل مقاومت شیمیایی یا محافظت در برابر آب باشد.

PVC عایق انتخابی برای تقریباً هر کابلی است که در زندگی روزمره خود در اطراف خود می بینیم. همه چیز از کابل برق گرفته تا سرنخ های هدفون و تلفن های همراه همیشه PVC هستند. به طور کلی، پی وی سی به دلیل محدوده عملکرد محدود، کابلی است که برای بسیاری از کاربردهای دما مورد استفاده قرار نمی گیرد. PVC استاندارد فقط برای استفاده در محدوده -10 تا +70 درجه سانتیگراد مناسب است. یک نسخه با دمای بالا که بیشتر در این صنعت استفاده می شود، حد بالایی را تا 105 درجه سانتیگراد افزایش می دهد. هنوز برنامه های زیادی وجود دارد که در این محدوده قرار می گیرند و اگر کاربرد اجازه استفاده از PVC را می دهد، کم هزینه ترین گزینه است.

 

بیشتر بخوانید:

فلومتر الکترو مغناطیسی چیست؟ انواع فلومتر مغناطیسی

 

مراحل سیم کشی pt100

در بسیاری از برنامه ها نیازی به ارائه صفحه ای که به زمین باشد وجود ندارد. با این حال، بسیاری از کابل‌های ارائه شده توسط Process Parameters دارای یک صفحه نمایش هستند. این غربالگری معمولاً به شکل یک نوار بافته شده مسی آبکاری شده به جای یک صفحه نواری به خود می گیرد زیرا در محدوده وسیع تری از دما مقاومت می کند.

مگر اینکه درخواست شود، صفحه نمایش را به عنوان دمی که می تواند زمین شود، خاتمه نمی دهیم، اما در صورت لزوم در دسترس است. طبق تجربه، مشتریان ما با این نوع سنسور مشکل نویز الکتریکی را تجربه نمی کنند. با این حال، اگر شما نیاز به اتصال زمین مداوم از طریق سنسور کامل دارید، می توان این امکان را فراهم کرد.

مزیت اضافه شده داشتن یک صفحه قیطانی در داخل کابل، استحکام مکانیکی اضافی آن است. این می تواند به ویژه در کاربردهایی که در آن ساییدگی ژاکت کابل وجود دارد سودمند باشد.

ساختار اصلی یک دمای Pt100 حول یک مقاومت دقیق است که در نقطه اندازه‌گیری در مجموعه قرار دارد، که توسط طول کابل به ابزار اندازه‌گیری متصل است. این کابل ممکن است شامل اجزای دیگری مانند اتصالات، فرستنده دما و غیره نیز باشد. با این حال، در همه موارد، باید مقداری اتصال الکتریکی بین عنصر حسگر و جزء بعدی در سیستم وجود داشته باشد.

واضح است که هنگام اندازه گیری دما با استفاده از یک سنسور Pt100 RTD ما فقط به مقاومت عنصر حسگر علاقه مندیم. با این حال هر جزء اضافه شده به مدار اندازه گیری از جمله سیم یا کابل مورد استفاده نیز مقاومت خاص خود را دارد. این به طور بالقوه می تواند باعث خطاهای اندازه گیری شود اگر به دقت در نظر گرفته نشود.

 

سیم بندی pt100 دو سیمه

در حالی که اتصال Pt100 با استفاده از یک اتصال دو سیم کاملاً امکان پذیر است، باید بدانید که این باعث ایجاد خطاهای اندازه گیری به دلیل مقاومت سیم سرب می شود. این به این دلیل است که ابزار اندازه گیری مقاومت کل مدار اندازه گیری را اندازه گیری می کند و نه فقط مقاومت خود عنصر حسگر را.

اگر در نظر بگیرید که تغییرات مقاومت در هر درجه سانتیگراد تغییر دما فقط 0.3851Ω است، با اضافه کردن سیم های اتصال با مقاومت حتی فقط 1Ω منجر به خطای تقریباً 2.6+ درجه سانتیگراد می شود.

با توجه به اینکه اغلب از اتصال دو سیم استفاده می شود و Process Parameters حسگرهای زیادی را با این نوع اتصال تولید می کند. اغلب به عنوان راه حلی با هزینه کمتر برای ماشین سازانی که طول کابل بسیار کوتاهی دارند استفاده می شود. اتصال دو سیم برای چند مورد خاص به شرح زیر مناسب است:

جایی که اپلیکیشن تقاضای بالایی برای دقت ندارد.
جایی که کابل سنسور بسیار کوتاه است.
جایی که خطا با آزمایش مشخص می شود و یک افست روی ابزار اندازه گیری اعمال می شود.
اگر درخواست های برنامه شما در این موارد قرار نگیرد، روش های استانداردی برای جبران مقاومت سرب وجود دارد.

 

سنسور دمای 3 سیمه

افزودن یک سیم سوم، متصل به یک طرف عنصر اندازه گیری، به جبران مقاومت سرب کمک می کند. بسیار مهم است که هر یک از سه سیم مورد استفاده در مدار اندازه گیری از نظر اندازه و طول هادی برابر باشند. این به این دلیل است که نتیجه اندازه‌گیری شده میانگین است و فقط در جایی که هر سه سیم مقاومت یکسانی دارند، دقت خوبی به دست می‌دهد.

مشخصات اتصال 3 سیم با اندازه گیری مقدار مقاومت از طریق آشکارساز و همچنین گرفتن یک مقدار مقاومت دوم از طریق جفت سیم های متصل در یک طرف آشکارساز کار می کند. تفریق این مقدار مقاومت از مجموع، مقدار مقاومت عنصر اندازه گیری را به صورت مجزا به دست می دهد.

اتصال سه سیم تا حد زیادی رایج ترین نوع سیم کشی مورد استفاده در دماسنج Pt100 است. بسیاری از ابزارها از این روش اتصال از جمله فرستنده‌های دما، کنترل‌کننده‌های دما، نمایشگرهای پانل و ثبت‌کننده‌های داده استفاده می‌کنند و در بسیاری از موارد در صورت استفاده از سیستم 2 سیم به درستی کار نمی‌کنند.

اگر از یک سنسور 4 سیم با یک ابزار 3 سیم استفاده می کنید، می توانید به سادگی سیم چهارم را نادیده بگیرید و آن را بدون اتصال رها کنید.

 

سیم کشی RTD و PT100 چهار سیم

برای بیشترین دقت، باید مشخصات چهار سیم Pt100 RTD را انتخاب کنید. این سیستم اندازه گیری تنها راه برای جبران کامل مقاومت سرب در سیستم اندازه گیری است، حتی اگر هر سیم مقاومت متفاوتی داشته باشد.

سیستم اندازه گیری با استفاده از یک جفت سیم برای حمل جریان تحریک مورد استفاده برای اندازه گیری و جفت دوم برای اندازه گیری مقاومت آشکارساز حسگر با اندازه گیری افت ولتاژ استفاده می شود.

از آنجایی که روش اتصال 4 سیم به طور کامل تمام مقاومت سرب را جبران می کند، ما قویاً توصیه می کنیم که از این روش در هنگام استفاده از مشخصات بالای Pt100 مانند تحمل 1/5 یا 1/10 DIN استفاده شود. ما معتقدیم که تعیین یک سنسور دمای تحمل بالا با هزینه مربوط به آن و سپس استفاده از یک سیستم اندازه‌گیری پایین‌تر، صرفه‌جویی نادرستی است. اتصال چهار سیم عمدتاً در آزمایشگاه ها و برنامه های کالیبراسیون و در هر جایی که بالاترین دقت مورد نیاز است استفاده می شود.

 

نحوه سیم کشی ترموکوپل

سیم کشی ترموکوپل Pt100

اصطلاح "ترموکوپل Pt100" گمراه کننده است زیرا چنین سنسوری وجود ندارد. این اصطلاح ادغام نام دو فناوری جداگانه است. هنگام تعیین یک ترموکوپل یا Pt100، مهم است که به طور مثبت تشخیص دهید که از کدام سنسور استفاده می کنید زیرا قابل تعویض نیستند.

در اینجا شایان ذکر است که به طور کلی، یک Pt100 دارای رنگ دم با کد قرمز و سفید خواهد بود. واضح است که اگر سه یا چهار دم دارید، حسگر به وضوح یک Pt100 از یک اتصال 3 یا 4 سیمی است. با این حال، اگر سنسور دارای دو دم، یکی قرمز و دیگری سفید باشد، آیا می توانید مطمئن باشید که Pt100 است؟

متأسفانه، پاسخ لزوماً «بله» نیست. بسیاری از سازندگان حسگر از همان کابل 2 هسته ای برای ترمیستورها استفاده می کنند که برای Pt100 استفاده می کنند. همچنین برخی از انواع ترموکوپل ها با دم های قرمز و سفید، یعنی نوع J در هنگام استفاده از کدگذاری رنگی ANSI آمریکایی شناسایی می شوند. کابل جبران کننده برای نوع R و S همچنین دارای دم های قرمز و سفید در صورت کد رنگی با استاندارد DIN آلمان است، اما به دلیل نوع کاربردهایی که برای آن مناسب است، احتمال سردرگمی کمتری وجود دارد.

برای شناسایی مثبت یک سنسور، باید به روش‌های دیگر تست در مواردی که شک وجود دارد نگاه کنید.

سیم کشی فرستنده Pt100

یکی دیگر از منابع سردرگمی در مورد سیم کشی سنسورهای دمای Pt100 زمانی است که یک فرستنده دما همراه با سیستم اندازه گیری وجود دارد. شما باید دستورالعمل های سیم کشی را برای نوع فرستنده ای که استفاده می کنید بررسی کنید، اما به طور کلی می توان آنها را به شرح زیر خلاصه کرد:

سیم کشی ترانسمیتر دما با خروجی 20-4 میلی آمپر

صرف نظر از اینکه این فرستنده ها در فرستنده سر هستند یا DIN Rail، باید دو مجموعه اتصال پیدا کنید. یکی با برچسب "ورودی" و مجموعه دیگر با برچسب "خروجی".

سمت ورودی به طور کلی دارای سه ترمینال برای ورودی سنسور 3 سیم یا معمولاً چهار پایانه برای اتصال 4 سیم است. شما باید نمودار سیم کشی را دنبال کنید و مطمئن شوید که یک سیم سفید (برای 3 سیم) را در یک طرف مدار و دو سیم قرمز را در طرف دیگر قرار دهید.

خروجی معمولاً فقط دو ترمینال خواهد داشت زیرا دستگاه 4-20 میلی آمپر تقریباً مطمئناً از حلقه تغذیه می کند. به عبارت دیگر، 2 سیم متصل به خروجی منبع تغذیه را تامین می کنند اما سیگنال mA را نیز به بیرون منتقل می کنند.

 

سیم کشی ترانسمیتر دما با خروجی 10-0 ولت

اینها در صنعت دما کمتر رایج هستند، اما وجود دارند و تنها از این جهت متفاوت هستند که سمت خروجی فرستنده به جای دو پایانه، سه پایانه دارد. این به این دلیل است که یک جفت رسانا نمی تواند هم قدرت ورودی و هم خروجی سیگنال را تامین کند. این سه پایانه دارای برچسب Power +ve، Signal -ve و Ground خواهند بود (یا مشابه. به یک زمین مشترک برای برق و سیگنال توجه کنید).

 

آموزش سیم بندی تمامی تجهیزات ابزار دقیق (ترموکوپل، ترانسمیتر دما، ترمیستور، RTD و PT100) در مرکز ابزار دقیق ایران، آداک فرایند سپهر انجام میگردد.

 

  • آداک فرایند سپهر

تجهیزات ضد انفجاری و ATEX

آداک فرایند سپهر |

تاییدیه اتکس که در ابتدا توسط اروپا پایه گذاری شده است، به قدری فراگیر است که در بسیاری از کشورهای دیگر مانند ایران نیز کاربرد دارد. در استاندارد اتکس، محیط های صنعتی از لحاظ خطر وقوع آتش سوزی و انفجار، تقسیم بندی می شوند. به هر دسته از این منطقه ها اصطلاحا زون گفته می شود. سپس، هر تجهیزی که توسط اتکس مورد بررسی قرار گیرد، یک کد دریافت میکند. اما زون ها شامل چه مواردی می شوند و از کجا میتوان فهمید که هر تجهیزی برای کدام زون مناسب است؟ در این مطلب همه چیز در مورد استاندارد اتکس توضیح داده شده...

یکی از مطرح ترین استانداردهای طبقه بندی محیط های صنعتی، اتکس برگرفته از عبارت  ATmospheres EXplosives است که نزد اهالی صنعت به خوبی شناخته شده است. 

تاییدیه اتکس(ATEX) که در ابتدا توسط اروپا پایه گذاری شده است، به قدری فراگیر است که در بسیاری از کشورهای دیگر مانند ایران نیز کاربرد دارد. 

در استاندارد اتکس، محیط های صنعتی از لحاظ خطر وقوع آتش سوزی و انفجار، تقسیم بندی می شوند. به هر دسته از این منطقه ها اصطلاحا زون گفته می شود. سپس، هر تجهیزی که توسط اتکس مورد بررسی قرار گیرد، یک کد دریافت میکند. این کد اتکس تعیین میکند که ایمنی تجهیز، مناسب برای استفاده در کدام یک از این زون هاست. 

بسیاری از اهالی صنعت با زون های اتکس آشنا هستند؛ اما نکته سخت تر اینجاست که بتوانیم با خواندن کد اتکس، بفهمیم که این تجهیز برای کدام یک از این زون ها مناسب است! در این مطلب از آداک فرآیند سپهر، به ساده ترین شکل ممکن تمامی زون های اتکس و نحوه خواندن کد هر تجهیز را آموزش خواهیم داد. بعد از این مطلب، به هیچ منبع دیگری در ارتباط با استاندارد اتکس نیاز نخواهید داشت؛ پس تا پایان این مطلب با ما همراه باشید

برای خواندن ادامه مقاله استاندارد ضد انفجاری کلیک کنید!

تاریخچه تجهیزات ابزار دقیق

تجهیزات ابزار دقیق یکی از ارکان اساسی در پیشرفت صنایع و کنترل فرآیندها است. آغاز توسعه ابزارهای دقیق به قرن 17 میلادی برمی‌گردد که با اختراع اولین وسایل برای اندازه‌گیری دما و فشار آغاز شد. اما واقعیت تکنولوژیکی ابزارهای دقیق با پیشرفت علم و فناوری، به ویژه در قرن 20 میلادی، به اوج خود رسید. با پیشرفت الکترونیک و کامپیوتر، تجهیزات ابزار دقیق قابلیت‌های بیشتری را به دست آورده و نقش بسیار مهمی در بهبود کنترل و کیفیت فرآیندها و محصولات صنایع مختلف داشته‌اند. در ادامه این مقاله از پیشخوان به همه سوالات شما پاسخ می‌دهیم.

تعریف ابزار دقیق
ابزار دقیق (instrumentation) به هر وسیله‌ای گفته می‌شود که برای اندازه‌گیری و کنترل دقیق پارامترهای فیزیکی یا شیمیایی در فرآیندها و سیستم‌های صنعتی و آزمایشگاهی استفاده می‌شود. این ابزارها از اصول فیزیک، الکترونیک، مکانیک و شیمیایی برای عملکرد خود استفاده می‌کنند.

ابزار دقیق معمولا شامل سنسورها، ترانسمیترها، کنترلرها و نمایشگرها می‌شوند. هدف اصلی ابزار دقیق، اندازه‌گیری دقیق و صحیح پارامترهای مختلفی مانند فشار، دما، رطوبت، جریان و سطح است.

  • آداک فرایند سپهر